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The evolution characteristics of monopolar vortices in an irrotational annular shear
flow were investigated both experimentally and theoretically. The background flow
was generated in a rotating tank by an appropriate source–sink configuration, while
the monopolar vortex was created by withdrawing fluid for a short time. Dye-
visualization studies demonstrated the gradual destruction of the vortex through a
process called ‘vortex stripping’, i.e. long filaments of passive tracers were being shed
from the edge of the vortex. In contrast to uniform shear flows, these filaments were
asymmetrically attached to the vortex core. Furthermore, the vortex was observed to
evolve in a quasi-stationary manner until its final indefinite breaking. The asymmetric
stripping process could be explained by modelling both the monopolar vortex and
the ambient flow simply by point vortices, and by adopting the method of contour
kinematics to trace material contours in the velocity field induced by the point vortices.
Furthermore, the effect of a continuous spatial vorticity distribution was investigated
by applying the contour dynamics technique, in which the vortex is represented by
a stack of uniform vorticity patches. The observed vortex evolution could be well
captured by this latter approach.

1. Introduction
The large-scale motions in the atmosphere and the ocean may be considered as

two-dimensional owing to the geometrical constraints and the rotation of the Earth.
Also density stratification may contribute to the two-dimensionality of these geo-
physical flows. Satellite observations have revealed the presence of large-scale vortical
structures, such as the low- and high-pressure areas and oceanic eddies. Numerical
studies have confirmed the formation of coherent structures in two-dimensional flow
domains (see for example McWilliams 1984 and Legras, Santangelo & Benzi 1988).

Two-dimensional vortices may be distorted by mutual interaction. Owing to their
generally compact shape, vorticity is mainly concentrated in the core of each vortex. If
these vortices come close to each other, they will inevitably merge (see e.g. Overman
& Zabusky 1982 and Melander, Zabusky & McWilliams 1988). However, as long
as they are relatively far apart, they may feel a shearing background flow that is
essentially irrotational.

† Present address: Royal Netherlands Meteorological Institute, PO Box 201, 3730 AE De Bilt,
The Netherlands.
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Recently, the behaviour of two-dimensional vortices in shear flows has been in-
vestigated intensively, especially in numerical studies. Contour dynamics simulations
by Dritschel (1989) and Legras & Dritschel (1993, 1994) have revealed the so-called
‘stripping’ of distributed vortices in uniform shear flows, i.e. the removal of weak
vorticity from the edge of the vortex, leading to the appearance of long vorticity
filaments which are carried away by the ambient flow. However, not much attention
has been paid so far to the behaviour of a monopolar vortex in an irrotational shear
flow.

Therefore, in the present paper, the evolution of a monopolar vortex in an irrota-
tional annular shear flow will be investigated, both experimentally and theoretically.
The laboratory experiments were performed in a rotating tank. The ambient flow
was generated by an appropriate source–sink configuration, whereas the monopolar
vortex was created by locally withdrawing fluid for a short time. Apart from flow-
visualization studies, which were necessary to observe the qualitative behaviour of the
flow field, quantitative information was obtained by video recordings of small tracer
particles. Image analysis techniques were used to measure vorticity distributions and
to follow individual particles.

It will be shown that the vortex evolution is characterized by the asymmetric
shedding of long filaments. Theoretically, this behaviour can be explained by mod-
elling both the monopolar vortex and the irrotational annular shear flow by point
vortices, and by applying the so-called contour kinematics method to follow contours
of passive tracers. Since the point vortex contains vorticity in one singular point only,
whereas real vortices have essentially distributed vorticity, the effect of the distributed
vorticity was investigated by adopting the contour dynamics approach.

This paper is organized as follows. In § 2, a theoretical description will be given
of the irrotational shear flow induced by the source–sink arrangement, followed by
a description of the laboratory set-up in § 3. After that, the laboratory observations
will be presented in § 4, in which the characteristics of both the shear flow and the
monopolar vortex will be investigated separately. In this section, the evolution of the
monopolar vortex in the annular shear flow will also be discussed. In § 5, the observed
vortex-stripping process will be explained kinematically by the contour kinematics
model. In addition, the effect of distributed vorticity will be discussed in § 6, where
the results obtained by the contour kinematics technique will be compared with those
obtained by contour dynamics calculations. Finally, in § 7, the main results will be
discussed and the conclusions will be given.

2. Theoretical description of the source–sink flow

Consider the following source–sink configuration in a system that rotates at an
angular velocity Ω about the vertical axis of symmetry (figure 1). Fluid is injected
axisymmetrically at a flow rate Q through a ring-shaped line source in the bottom
corner, whereas the same amount of fluid is withdrawn through a sink which is
positioned in the centre of the tank.

In view of the axisymmetric shape of the flow domain, it is useful to refer to a
cylindrical coordinate system (r, θ, z), with the corresponding velocity components
(u, v, w). The rotation vector Ω is taken along the z-axis. For convenience, the lengths
and velocities will be non-dimensionalized by a typical length scale L and some
characteristic velocity U, respectively, whereas the dimensionless volumetric flow rate
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Figure 1. Schematic drawing of the experimental set-up for the generation of the annular shear
flow: (a) top view and (b) side view. The container is placed on a turntable, which rotates with
an angular velocity Ω. Fluid is injected axisymmetrically with a constant flow rate Q through a
ring-shaped line source in the bottom corner, whereas the same amount of fluid is withdrawn by
a sink in the centre of the tank. The thin arrows indicate the direction of the O(E1/2) transport,
whereas the heavy arrows denote the O(1) interior velocity field. The parabolic bottom is indicated
by the hatched area.

Q∗ is defined by

Q∗ = Q/(UL2E1/2), (2.1)

where Q is the dimensional flow rate and E is the Ekman number defined below.
Relative to a co-rotating reference frame, with constant angular velocity Ω, the

stationary flow is governed by the equations of momentum and conservation of mass,
which are given in dimensionless form by

Ro (v∗ · ∇∗)v∗ + 2k∗ × v∗ = −∇∗p∗ + E(∇∗)2v∗, (2.2)

∇∗ · v∗ = 0, (2.3)

respectively, with v∗ the velocity vector in the rotating frame, p∗ the reduced pressure
and k∗ = Ω/Ω a unit vector in the axial direction. Note that the fluid is assumed
to be incompressible and homogeneous. The dimensionless parameters Ro and E in
(2.2) are the Rossby number and the Ekman number, defined as

Ro = U/(ΩL), (2.4)

E = ν/(ΩL2), (2.5)

respectively.
It is assumed that the fluid motion is slow compared to the angular velocity of the

system, so that the nonlinear terms in (2.2) can be neglected, i.e. Ro � 1. Moreover,
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viscous effects are assumed to be small (E � 1), which implies that the system is
rapidly rotating.

In this system, three different regions may be distinguished. At some distance from
the solid walls, the fluid is not affected by viscosity, and is governed by a geostrophic
balance of forces:

2k∗ × v∗I = −∇p∗I , (2.6)

where the index I refers to the ‘interior’ domain. The geostrophic balance (2.6) and
the continuity equation (2.3) imply that ∂v∗I/∂z = 0. In order to satisfy the no-slip
boundary conditions, an Ekman layer of thickness δ∗E = E1/2 arises at the bottom
wall, whereas a Stewartson layer of thickness δ∗S = E1/4 is present at the sidewall (see
Stewartson 1957). It will be assumed that the air drag is identically zero, so that no
boundary layer is present at the free surface.

From the azimuthal component of (2.6), with ∂/∂θ = 0, it follows that u∗I = 0.
Moreover, the normal velocity at the free surface requires that w∗I = 0. Therefore,
the interior flow is characterized by a purely azimuthal motion. This implies that the
radial O(E1/2) transport from the source to the sink has to be carried completely by
the Ekman layer at the bottom wall. From linear Ekman dynamics (see e.g. Greenspan
1968) it can be derived that in the Ekman layer the local radial O(E1/2) flux per unit
length of circumference is given by

Q̃∗E = 1
2
v∗I . (2.7)

Consequently, the azimuthal interior velocity field is given by

v∗I = Q∗/(πr∗), (2.8)

or in dimensional form:

vI = γs/r, (2.9)

where

γs ≡ Qπ−1
(
Ω/ν

)1/2
. (2.10)

Obviously, the induced motion in the interior domain is equivalent to a potential
vortex of strength γs (the factor 2π has been included in the definition of γs). It is also
apparent that the strength γs is proportional to the flow rate Q. In the subsequent
analysis, the index I will be omitted.

3. Experimental arrangement
The experiments were performed in a cylindrical tank that was placed on top of

a rotating table (see figure 1). The tank was filled with water, the fluid depth being
typically 18 cm, and the angular velocity Ω of the turntable was set to 0.70 rad s−1.
Either a flat-bottomed container was used (inner diameter 92 cm and depth 35 cm)
or a tank with a parabolic bottom (inner diameter 98 cm and depth 25 cm). The
parabolic bottom was applied to mimic the shape of the free surface. In this way, a
uniform fluid depth was established in order to avoid topographic vorticity production
(by stretching or squeezing of fluid columns). Since a parabolic bottom is not required
for purely azimuthal flows (see Hide 1977), the shear flow measurements were carried
out in the flat-bottomed container.

3.1. Shear flow generation

Fluid was injected axisymmetrically at the sidewall through a ring-shaped tube (of
inner diameter 8 mm), which was positioned in the bottom corner of the tank. The
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tube was perforated with small holes of diameter 1–1.5 mm, every 2 cm along the
circumference. Fluid was withdrawn through a narrow Perspex tube of inner diameter
10 mm, which was placed vertically along the rotation axis at the centre of the tank.
The open end of the sink tube was positioned typically 10 mm above the tank bottom.
A pump was used to circulate the fluid through the container with a constant flow
rate Q. The flow rate was varied between 1.0 and 10.5 ml s−1, and the fluctuations in
Q were measured to be less than 0.2 ml s−1. A similar generation technique was used
in a detailed experimental study by Hide (1968), in which a variety of source–sink
configurations were discussed. Source–sink flows have also been investigated, either
analytically or experimentally, by e.g. Kuo & Veronis (1971), van Heijst (1984) and
Brickman & Ruddick (1990).

3.2. Monopole generation

A cyclonic vortex was created by locally withdrawing fluid through a perforated
Perspex tube, with inner diameter 10 mm and outer diameter 15 mm, which was
positioned vertically in the fluid. The tube contained 248 small holes of diameter
2 mm, which were distributed uniformly over a length of 15 cm. The fluid was
removed by syphoning with a typical flow rate q = 40 ml s−1 and a typical forcing
period δt = 10 s. Owing to the presence of the Coriolis force, the radial motion
induced by the sink was deflected in a cyclonic direction. After the forcing was
stopped and the tube was removed from the tank, a well-defined swirling motion was
established within a few rotation periods.

3.3. Flow visualization and measurements

The free surface of the fluid was seeded with small tracer particles in order to
obtain quantitative information about the interior velocity field. The motion of the
floating particles was monitored continuously by a video camera, which was mounted
in the rotating frame at some distance above the tank. After the experiment was
finished, the velocity field could be determined at successive times by the particle-
tracking package DigImage, developed by Dalziel (1992). Next, the measured velocity
field was interpolated on a mesh of 30× 30 grid points (see Paihua Montes 1978 and
Nguyen Duc & Sommeria 1988), which was convenient for calculating numerically the
distributions of both the vorticity and the stream function. Furthermore, fluorescent
dye was added to the fluid to study the qualitative behaviour of the flow field.

4. Laboratory observations
4.1. Shear flow characteristics

In figure 2, the interior velocity components are plotted versus the radial distance r
for a typical annular shear flow which was generated by the source–sink arrangement
as described in § 3. Each data point corresponds to a velocity vector as obtained
by the digitized particle streaks. Only velocity vectors corresponding to the interior
region were considered, i.e. the flow within the Stewartson layers was neglected. The
scatter in the observed data is probably due to the measurement inaccuracy and small
disturbances at the free surface, as well as deviations from axisymmetry of the shear
flow. In order to confirm that the interior flow was essentially two-dimensional, some
dye-producing crystals were dropped on the free surface of the rotating fluid. The
vertical dye streaks originating from these crystals demonstrated that the velocity
in the interior region was indeed depth independent. The observed distribution of
azimuthal velocity, see figure 2 (a), was least-square fitted with (2.9) (solid line),
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Figure 2. Radial distributions of the interior velocity components associated with the annular shear
flow, 23 min after the forcing was started: (a) azimuthal component v and (b) radial component u.
The experimental data are indicated by dots, whereas the least-square fit with (2.9) is represented
by the curved solid line. Based on (2.9), the strength of the shear flow was found to be equal to
24.1± 0.1 cm2 s−1. Experimental parameters: Q = 10.0 ml s−1 and H = 17.5 cm.
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Figure 3. (a) Time evolution of the instantaneous shear flow strength γ̂s with TE = 211 s. The
measured data (squares) are least-square fitted with (4.1). (b) Relationship between the strength
γs of the stationary shear flow and the volumetric flux rate Q. The measured data (squares) are
least-square fitted with the relation γs = αQ. Experimental parameters: Q = 10.0 ml s−1 (frame a)
and H = 17.5 cm.

where γ̂s was taken as a free parameter, and a very good agreement was obtained.
(Here, the hat-symbol is added in order to distinguish between the instantaneous
shear flow strength γ̂s and the stationary value γs.) Furthermore, it can be inferred
from figure 2 (b) that the radial velocity is of the same order as the scatter in the
experimental data, which is in agreement with the theoretical relation u = 0.

The spin-up behaviour of the shear flow was investigated by calculating the strength
γ̂s at successive times with a least-square fit as shown in figure 2 (a). Based on these
individual fits, the experimental error in γ̂s was estimated to be 0.1 cm2 s−1. The
measured time evolution of γ̂s is plotted in figure 3 (a) as well as a least-square fit
according to

γ̂s = γs
[
1− exp

(
−t/τs

)]
, (4.1)

where the free parameters γs and τs represent the stationary strength and the char-
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acteristic time scale, respectively. It can be seen that the curve closely matches the
experimental data. The corresponding time scale τs was found to be equal to 218±10
s. The deviations from (4.1) are probably due to small fluctuations in Q, since the
error in γ̂s is far too small to account for these deviations. According to linear Ekman
dynamics (see e.g. Greenspan 1968), the time evolution in rotating flow systems is
characterized by the e-folding Ekman time

TE = H/(νΩ)1/2, (4.2)

where H represents the (mean) fluid depth. Taking the experimental values H =
17.5 cm, Ω = 0.70 rad s−1 and ν = 0.98 × 10−2 cm2 s−1 (for a temperature of 21◦C)
yields TE = 211 s, which is very close to the observed time scale τs. It can be
derived from figure 3 (a) that the flow has reached a stationary state after typically
t = 6TE ≈ 20 min.

According to (2.10), the stationary strength γs is proportional to the volumetric flux
rate Q. This assertion was checked by generating several shear flows with different
flux rates Q, while the angular velocity Ω was held constant at 0.70 rad s−1 and the
temperature was close to 20◦C. The strength γs was obtained by taking the average
of three instantaneous strengths γ̂s which were determined at t = 30, 35 and 40 min,
respectively. In figure 3 (b), γs is plotted as a function of Q, and the linear relationship
is obvious. A linear least-square fit (solid line) was applied to the observed data
with the relation γs = αQ. The experimental value α = 2.33 ± 0.02 cm−1 is close
to the corresponding theoretical value α = π−1(Ω/ν)1/2 = 2.66 cm−1. The systematic
deviation may be explained by the shear stress at the free surface. Owing to the rapid
rotation of the container, air drag may slow down the motion of the tracer particles
at the free surface.

Also an anticyclonic shear flow was generated by simply reversing the direction of
flow through the tank, i.e. fluid was injected through a source in the centre of the
tank and withdrawn through a sink at the sidewall. Apart from the direction of the
azimuthal flow, similar results were obtained to those related to the cyclonic shear
flow.

4.2. Monopolar vortex characteristics in a still ambient fluid

In figure 4, typical measured distributions of velocity v and vorticity ω are plotted
along a line through the centre of the monopolar vortex, where s denotes the spatial
coordinate and s = 0 is defined as the vortex centre. The vortex was generated in a still
ambient fluid by the method described in § 3. The experimental data are indicated
by the symbols. The velocity v corresponds to the velocity component directed
perpendicular to the cross-section. It is apparent that the vortex is characterized by
a core of single-signed vorticity, which is maximum in the centre, with hardly any
negative vorticity around it, i.e. the induced flow has net circulation. This observation
can be easily understood from the generation method. Consider the change in the
circulation Γ around a material contour C which encloses the sink tube by which the
vortex is generated. For a barotropic and inviscid fluid, the change in the circulation
can be written as

DΓ

Dt
= −2

∮
C

(Ω× v) · ds = −2Ωq, (4.3)

with ds an infinitesimal segment of the contour C . This equation expresses the
production of vorticity by the presence of the Coriolis force. Since the sink induces
a radially inward motion, q will be negative so that DΓ/Dt > 0 until a quasi-
geostrophic motion is established after the forcing is stopped.
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Figure 4. Radial cross-sectional distributions of (a) the velocity v directed perpendicular to
the cross-section and (b) the vorticity ω of a sink-induced cyclonic vortex, at t/TE = 0.27
with TE = 220 s (the forcing was stopped at t = 0). The experimental data (squares) corre-
sponding to |s| 6 5 cm were least-square fitted with (4.5) and (4.4), respectively, which yielded
γv = 3.61 ± 0.08 cm2 s−1 and rm = 2.9 ± 0.1 cm. Experimental parameters: q = 40 ml s−1, δt = 10 s
and H = 19.0 cm.

The measured velocity profile is observed to be approximately linear in the core
of the vortex, whereas at larger radii the velocity decreases relatively slowly towards
zero. In figure 4, the measured distributions in the vortex core (|s| 6 5 cm) can be
accurately fitted by the instantaneous profiles (solid lines) of the so-called Lamb
vortex

ω =
2γv
L2
v

exp
(
−s2/L2

v

)
(4.4)

and

v =
γv

s

[
1− exp

(
−s2/L2

v

)]
, (4.5)

respectively, where γv represents the total circulation of the vortex (apart from a factor
2π). In fact, this solution can be considered as a ‘snap-shot’ of a viscously decaying
point vortex at some time t, which was analysed by Oseen in 1911 (for details, see
Lamb 1932). The characteristic length scale Lv is a measure of the vortex radius and
can be related to the radius of peak velocity rm by the relation rm = 1.12Lv .

The time evolution of stable barotropic vortices has been accurately described by
Kloosterziel & van Heijst (1992). Based on their rotating fluid experiments, it was
found that for small Rossby numbers the decay of the vortex velocity field is close
to exponential, as expected from linear Ekman dynamics. However, their experiments
also showed that under typical laboratory circumstances the initial Rossby number
is O(1), so that nonlinear effects are important then: the initial stage of the vortex
evolution was characterized by a steepening of the velocity profiles and a faster decay
rate as compared to linear Ekman decay.

Despite this initial steepening, the results in figure 4 show that in the vortex core
the velocity and vorticity distributions can be accurately represented by (4.4) and
(4.5). Similar observations were made for later times.

4.3. Evolution of the monopolar vortex in the shear flow

The typical evolution of the sink vortex in the annular shear flow is illustrated by
the series of video images in figure 5. The vortex was created halfway between the
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Figure 5. Dye visualization of a monopolar vortex in an annular shear flow at successive times
after the removal of the sink tube: (a) t/TE = 0.13, (b) 0.24, (c) 0.29, (d ) 0.34, (e) 0.39, (f ) 0.45,
(g) 0.55 and (h) 0.71, where the Ekman time TE = 190 s. The vortex was coloured with dye
between t/TE = 0 and 0.10. Experimental parameters: Q = 10.5 ml s−1, q = 40 ml s−1, δt = 10 s and
H = 16 cm.

centre and the sidewall of the tank. Shortly after the vortex forcing was stopped and
the tube was removed from the tank, the vortex was visualized with fluorescent dye.
It is clear from figure 5 that the vortex is advected in a cyclonic direction, while in
the meantime, the vortex is being deformed into an oval-like shape. Moreover, the
evolution is characterized by the appearance of dye filaments on both sides of the
vortex. In the initial stage, see (a), one filament is expelled into the ambient fluid,
followed by a second filament which arises on the front side of the vortex (see b, c).
Close inspection of the flow pattern reveals that the filament at the rear of the vortex
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Figure 6. Enlarged digitized video image showing the asymmetric stripping of the monopolar
vortex at t/TE = 0.32, with TE = 190 s. Experimental parameters as in figure 5.

extends towards the second filament at the front. This can also be observed in figure 6,
where a detailed video image is shown of the deformed vortex, along with the two
filaments. Similar long vorticity filaments have been observed in numerical studies on
the interaction of two monopolar vortices of like-signed vorticity (see e.g. Melander,
Zabusky & McWilliams 1987 and Dritschel & Waugh 1992). As time proceeds, a
right-angled cusp appears in the dye pattern associated with the vortex core, see (d ),
which soon develops into a tail which is later swept away along the filament at the
rear of the vortex (see e, f ). Note that until this stage, the vortex core is oriented
perpendicular to the flow direction of the annular shear. In the final stage, however,
the vortex is completely torn apart while being wrapped around the sink in the centre
of the tank, as can be observed in (g, h).

5. Kinematic description of vortex stripping
In order to explain the observed stripping process discussed in § 4, the monopolar

vortex will be modelled by a point vortex (Pv) with strength γv . Moreover, it was
shown in § 2 that the interior velocity field induced by the source–sink configuration
is equivalent to that of a potential vortex, the strength of which, γs, is determined
by (2.10). Therefore, the ambient flow can also be represented by a point vortex (Ps)
which is forced to remain fixed in the origin (see figure 7). Point vortex Pv is located
at (x0, y0) and is passively advected under the action of Ps for an infinite domain. In
principle, the boundaries of the laboratory flow domain may be included by using the
method of images. However, the velocities induced by the image vortices are negligible
provided that γv/γs is sufficiently small and Pv does not approach the boundaries too
closely. Since both conditions are satisfied in the laboratory experiments, the effects
of the boundaries will be neglected in the present analysis.
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Figure 7. Characteristic streamline pattern associated with two point vortices (marked Pv and Ps,
respectively) in a co-rotating reference frame for the case γv/γs = 0.2 (see text for more details).
The separatrices are indicated by the dashed lines. The hyperbolic points are marked by S1 and N2,
respectively, whereas the elliptic point is marked by E.

When a co-rotating coordinate system is taken, in which the motion is steady, the
Eulerian velocity field is given by

u(x, y) = − γsy

x2 + y2
− γv(y − y0)

(x− x0)2 + (y − y0)2
+

γsy

x2
0 + y2

0

, (5.1)

v(x, y) =
γsx

x2 + y2
+

γv(x− x0)

(x− x0)2 + (y − y0)2
− γsx

x2
0 + y2

0

, (5.2)

with u and v the velocity components in the x- and y-direction, respectively. The
factors 2π have been included in the definitions of γv and γs. The first term in each of
the above equations corresponds to the shear flow, whereas the second term contains
the contribution of the monopolar vortex. The third term arises due to the rotation of
the reference system. From (5.1) and (5.2) the stream function can be derived, which
may be written as

ψ(x, y) = −γs
2

ln

[
x2 + y2

x2
0 + y2

0

]
− γv

2
ln

[
(x− x0)

2 + (y − y0)
2

x2
0 + y2

0

]
+
γs

2

x2 + y2

x2
0 + y2

0

. (5.3)

Figure 7 shows a contour plot of the co-rotating stream function for the case
γv/γs = 0.2. Two hyperbolic points (or stagnation points) can be identified, namely
at S1 and N2, and one elliptic point, E. Each hyperbolic point is associated with
the self-intersection of a streamline: the inner separatrix Ψ1, which has an eight-like
shape and encloses each point vortex separately, and the outer separatrix Ψ2, which
surrounds both point vortices.

In order to determine the stream function values ψ = Ψ1 and ψ = Ψ2 at the
separatrices, the positions of the hyperbolic points S1 and N2 have to be determined.
When it is assumed that x0 = 0, the hyperbolic points will lie on the y-axis due to the
symmetry of the flow (see figure 7). The position of S1 and N2 can then be determined
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by putting both (5.1) and (5.2) equal to zero, which yields

u = −γs
y
− γv

(y − y0)
+
γsy

y2
0

= 0, (5.4)

v ≡ 0. (5.5)

When the singular points (0, 0) and (0, y0) are excluded and the vortices do not
coincide, (5.4) can be written as a cubic equation(

y

y0

)3

−
(
y

y0

)2

−
(

1 +
γv

γs

)(
y

y0

)
+ 1 = 0, (5.6)

which has three real and unequal roots (assuming that γv/γs > 0):

y1

y0

= 2

(
4

9
+

1

3

γv

γs

)1/2

cos

(
α

3
− 2

3
π

)
+

1

3
, (5.7)

y2

y0

= 2

(
4

9
+

1

3

γv

γs

)1/2

cos
(α

3

)
+

1

3
, (5.8)

y3

y0

= 2

(
4

9
+

1

3
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in which

cos α =
9(γv/γs)− 16

6
√

3
[

4
3

+ γv/γs
]3/2 . (5.10)

The positions (0, y1) and (0, y2) correspond to the hyperbolic points S1 and N2,
respectively, whereas the position (0, y3) is related to the elliptic point E. The stream
function values Ψi (i = 1, 2) can now be determined by substituting yi (i = 1, 2) into
(5.3) and by setting x0 = 0:

Ψi ≡ ψ(0, yi) = −γs ln

∣∣∣∣ yiy0

∣∣∣∣− γv ln

∣∣∣∣ yiy0

− 1

∣∣∣∣+
γs

2

(
yi

y0

)2

, i = 1, 2. (5.11)

In order to get an idea of the shape of both separatrices, the stream function (5.3)
will be rewritten as

ψ = −γs ln

(
r

r0

)
− γv ln

(
R

r0

)
+
γs

2

(
r

r0

)2

, (5.12)

where r and R are the radii with respect to the vortices Ps and Pv , respectively, and
r0 is the distance between Ps and Pv .

Now, on each separatrix, the extrema of R can be found by substituting ψ = Ψi

into (5.12) and by taking the derivative of (5.12) with respect to θ (defined as in
figure 8 a), which yields

γv

Ri

dRi
dθ

=
γs

2

[
r2
i − r2

0

r2
i r

2
0

]
d(r2

i )

dθ
, (5.13)

where Ri (i = 1, 2) is the radial distance between Pv and an arbitrary point (xi, yi) on
the separatrix Ψi. Likewise, ri represents the radial distance between Ps and (xi, yi).
By using the trigonometric relation r2

i = R2
i + r2

0 + 2Rir0 sin θ and setting dRi/dθ = 0,
it can be derived that [(

r0/ri
)2 − 1

]
cos θ = 0. (5.14)
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Figure 8. (a) Location of the extrema on the separatrices, along with the definitions of R1 and θ.
(b) The relative radial distance R/r0 of the extrema versus γv/γs. (c) Characteristic parameters at
the extremal points as a function of γv/γs (see text).

In other words, the extrema of Ri should satisfy

ri = r0 (5.15)

or

θ = 1
2
π+ nπ, (5.16)

respectively, where n is an integer. Combination with (5.12) leads to the following
relevant solutions for the extrema of R on the separatrices:

RWi
r0

=
REi
r0

= exp

{
− γs
γv

(
Ψi −

1

2

)}
, (5.17)

RNi
r0

= exp

{
− γs
γv

[
Ψi + ln

(
1 +

RNi
r0

)
− 1

2

(
1 +

RNi
r0

)2
]}

, (5.18)

where the superscripts refer to the positions of the extrema relative to the vortex Pv , as
indicated in figure 8 (a). That is, RNi is the distance in the ‘Northward’ direction from
the vortex Pv to the separatrix Ψi, and similarly for REi , RSi and RWi . Relation (5.18)
is a transcendental equation which can be solved iteratively by common numerical
techniques. Note that RN2 refers to the same position as y2 in (5.8).
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In figure 8 (b), the radial positions of the extrema are plotted as a function of γv/γs.
The solid lines correspond to the inner separatrix (Ψ1), whereas the dashed lines are
related to the outer separatrix (Ψ2). It is obvious that on the interval 0 < γv/γs < 0.65

RWE
1 < RWE

2 < RN1 < RS1 < RN2 , (5.19)

whereas in the range γv/γs > 0.65

RWE
1 < RN1 < RWE

2 < RS1 < RN2 . (5.20)

Laboratory observations presented in § 4 have revealed that the monopolar vortex
is characterized by a continuous spatial vorticity distribution and net circulation.
Furthermore, it was observed that the vortex was deformed due to the presence
of the background shear flow. Since the vorticity of a point vortex is concentrated
in a singular point, the point vortex can essentially not be deformed. Therefore, a
passive contour is defined around the point vortex in order to model the shape of the
laboratory vortex. Initially, a circular contour may be chosen with radius Rv , which is
large enough to ensure that for the corresponding distributed vortex ω(Rv)/ωm � 1.
The area enclosed by this passive contour will now be part of the model vortex.

Suppose that Rv is defined such that ω(Rv)/ωm = β, where β is a constant that is
much smaller than 1. Then, depending on the values of Rv and γv/γs, three different
initial situations may be considered, as shown in the upper row of figure 9, with
the dashed lines denoting the separatrices. In situation A, the passive contour lies
entirely inside separatrix Ψ1, whereas in situation B, part of the model vortex is
located between separatrices Ψ1 and Ψ2. In situation C, the vortex partly overlaps
both separatrices. These three different situations that arise for different values of
Rv and γv/γs can also be identified in figure 8 (b). Case A corresponds to the area
below the curve RWE

1 (γv/γs), whereas situation B corresponds to the area enclosed
by the curves RWE

1 (γv/γs) and RWE
2 (γv/γs). Finally, the remaining area corresponds to

situation C.
In order to investigate the behaviour of the vortex for the three different cases

described above, the contour kinematics technique was applied here, which allows
passive tracers (or nodes) that are positioned on a material contour to be followed.
This technique is closely related to the contour dynamics method (see § 6), but the
velocities used to advect the contour are prescribed rather than calculated from
the contour position (as in contour dynamics). The displacement of each tracer
was calculated by solving (5.1) and (5.2) with a Runge–Kutta method with variable
time step and order (see Hairer, Nørsett & Wanner 1987). In order to maintain an
accurate representation of the material contour, extra tracers were added during the
time integration. Likewise, tracers were removed whenever possible to speed up the
calculations. For a detailed description of this method, see Meleshko & van Heijst
(1994). In the numerical simulations, the dimensionless time t∗ = t/T will be used,
with T = 2πr2

0/γs the orbit period of point vortex Pv around the centre of the flow
field.

The typical calculated time evolution of the vortex is shown in column (a) of
figure 9, with situation A taken as an initial condition. Since in a steady flow the
separatrix acts as a barrier for passive fluid particles, the vortex is trapped within the
area enclosed by Ψ1. Owing to the elliptic-like shape of the streamlines, the blob of
passive fluid is slightly deformed and two filaments arise which are being wrapped
around the vortex. These filaments, however, never escape from the region bounded
by the inner separatrix.

The advection of fluid with situation B as an initial condition is illustrated by the
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(a) (b) (c)

Figure 9. Calculated time evolution of passive tracers that are initially located on a circular contour
for three different cases: Rv/r0 = 0.10 (column a), Rv/r0 = 0.19 (column b) and Rv/r0 = 0.26
(column c). For each time series, γv/γs = 0.2 and the time interval between successive plots is 1/4
dimensionless time units.

sequence of plots shown in column (b) of figure 9. While most of the vortex area
is still trapped inside the region enclosed by separatrix Ψ1, both parts of the vortex
which are located outside Ψ1 are advected towards stagnation point S1, giving rise to
two tails which are expelled into the ambient flow as one filament.

When the vortex partly covers both separatrices (situation C), tracers that are
located between both separatrices will be transported towards stagnation point S1

(see column c in figure 9). This is also true for the tracers lying in the exterior region
on the left-hand side of Ψ2. However, the edge of the vortex on the right-hand side
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t* = 0 t* = 1/12

t* = 2/12 t* = 3/12

t* = 5/12 t* = 8/12

Figure 10. Temporal evolution of passive tracers for an exponentially decaying point vortex in an
annular shear flow. Numerical parameters: Rv/r0 = 0.26, γ0 = 0.32 and τ∗ = 0.43.

of separatrix Ψ2 will be advected towards stagnation point N2, and hence form an
additional tail, which is expelled as a second filament.

Thus far, attention has been restricted to steady flows. However, according to linear
Ekman dynamics, monopolar vortices in rotating fluids decay exponentially in time,
which was confirmed experimentally by Kloosterziel & van Heijst (1992). In order
to examine the effect of the exponential decay of vorticity, γ (≡ γv/γs) is made time
dependent according to

γ(t) = γ0 exp(−t/τ), (5.21)

where γ0 represents the initial ratio between γv and γs (the latter being a constant due
to the continuous forcing), and τ is the characteristic decay time.

Figure 10 shows a typical calculated evolution of the model vortex in the time-
dependent velocity field, with situation C taken as an initial condition. In the initial
stage of the evolution, the material contour is deformed in a similar manner as in the
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stationary case (see column c of figure 9). However, owing to the decay of γ the area
enclosed by separatrix Ψ1 will shrink, which leads to the continuous feeding of the
filament near stagnation point S1. Also both separatrices will come closer together,
which can be derived from figure 8 (b), so that the distance between the vortex
core and the filament on its left-hand side becomes smaller. Moreover, when time
increases, an anomalous tail appears close to stagnation point N2 (at t∗ ≈ 5/12), which
is entirely absent in the stationary case. Apparently, the expulsion of the anomalous
tail is a property of the decaying vortex. From the last frame in figure 10 (t∗ = 8/12)
it can be seen that the anomalous tail is expelled into the ambient flow close to the
second filament. The final stage of the evolution is characterized by the continuous
depletion of the vortex core, while the area of the vortex core progressively decreases.
Note that during the entire stripping process, the vortex core retains its perpendicular
orientation to the shear flow direction.

In order to explain the appearance of the anomalous tail, it is convenient to define
some average velocities in the narrow ‘canal’ between both separatrices:

uE =
Ψ2 −Ψ1

RE2 − RE1
, (5.22)

uN =
Ψ2 −Ψ1

RN2 − RN1
, (5.23)

uW =
Ψ2 −Ψ1

RW2 − RW1
. (5.24)

These velocities can easily be calculated numerically by using (5.11), (5.17) and (5.18).
Owing to the symmetry of the flow field, uE = uW (≡ uWE).

Furthermore, the time derivatives of the extremal radii RWE
i and RNi can be written

as

ṘWE
i =

dRWE
i

dγ
γ̇, (5.25)

ṘNi =
dRNi
dγ

γ̇, (5.26)

respectively, where the dot represents differentiation with respect to time, and γ̇ =
−γ/τ according to (5.21).

It may now be anticipated that all the fluid that crosses separatrix Ψ1 will be
carried away through stagnation point S1 as long as ṘWE

1 � uWE and ṘN1 � uN , i.e.
passive fluid is being advected quasi-steadily around separatrix Ψ1. However, when
one of these conditions is not satisfied, fluid may leak through separatrix Ψ2. In
order to investigate whether these conditions are fulfilled during the decay process,
the ratios τ∗ṘWE

i /uWE and τ∗ṘNi /u
N (with τ∗ = τ/T ) have been plotted versus γ in

figure 8 (c) for i = 1, 2.
Owing to the decay of γ, fluid will continuously leak through separatrix Ψ1.

Supposing that τ∗ ≈ O(1) (which is the case for the numerical results shown in
figure 10), it is clear from figure 8 (c) that fluid crossing the inner separatrix near one
of the extremal points W1 or E1 is advected adiabatically towards the stagnation point
S1 for all values of γ. Also near extremum N1 the fluid is removed in a quasi-steady
way, except for small values of γ. The latter restriction explains the occurrence of
the anomalous tail in the contour kinematics simulation: owing to the smallness of
velocity uN compared to both ṘN1 and ṘN2 , stagnation point N2 penetrates into the
core of the model vortex, which consequently leads to the expulsion of the anomalous
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tail. Although ṘN2 /u
N ≈ O(1) for the entire range of γ, stagnation point N2 can never

reach the boundary of the vortex as long as the fluid near separatrix Ψ1 is advected
quasi-adiabatically, i.e. ṘN1 /u

N � 1.
Additional numerical simulations were carried out with situation A or B as an

initial condition; apart from the absence of the first filament near stagnation point
N2, similar results were obtained to those shown in figure 10.

The experimental observations shown in figure 5 are in very good qualitative
agreement with the numerical results presented in figure 10 throughout the major
part of the vortex evolution. This is evident from the filaments that appear on both
sides of the vortex, and the shape and orientation of the vortex core. This similarity
is quite striking, keeping in mind that real vortices are characterized by a continuous
spatial vorticity distribution, whereas this is not the case for a point vortex. Even so,
the final breaking of the laboratory vortex cannot be explained by the simple point-
vortex model. Therefore, in the next section, the effect of the continuous vorticity
distribution will be examined.

6. The influence of distributed vorticity
The effect of the vorticity distribution on the evolution of the monopolar vortex

in the irrotational annular shear flow was investigated by applying the contour
dynamics approach. The contour dynamics method is based on the Euler equations
in two dimensions and requires a discretization of the spatial vorticity distribution,
i.e. the spatial vorticity profile is represented by concentric contours between which
the vorticity is uniform (see Zabusky, Hughes & Roberts 1979). The contours are
modelled by nodes and can be followed in time by performing a time integration of
the total velocity field which consists of two contributions: the velocity field associated
with the discretized vortex, which can be found by solving Poisson’s equation, and the
background velocity field, which may be calculated analytically. Like in the contour
kinematics approach, nodes are added and removed in the course of the calculation,
depending on the local deformation of the contours.

As an initial condition, the vorticity profile (4.4) was taken, which was represented
by seven equidistant vorticity contours. The uniform vorticity ωi at each vorticity
level i was chosen such that ωi = Γi/Ai, where Ai represents the area enclosed by the
bounding contours i and i−1, and Γi is the corresponding circulation associated with
the distributed vortex (it should be noted that i = 0 corresponds to the centre of the
vortex). The radius of the third contour was taken equal to Lv (the characteristic length
scale of the vortex), whereas the radius of the exterior contour Rv was chosen equal
to 2.6Lv . The flow surrounding the exterior contour was assumed irrotational. As a
result, the total circulation of the discretized vortex is 0.9988γ, which is almost equal
to the strength γ of the distributed vortex. The linear Ekman decay was mimicked by
allowing each level of uniform vorticity to decay according to ωi(t) = ωi(0) exp(−t/τ),
where ωi(0) represents the initial vorticity value.

The typical evolution of the vorticity contours is shown in figure 11, where the
same initial values for γ and τ have been used as in the contour kinematics calcula-
tions. These parameters are based on quantitative measurements of the sink-vortex
characteristics in a still ambient fluid just after the forcing device was removed from
the tank. Since the scaled radius of the exterior vorticity contour Rv/r0 is equal to
that of the material contour shown in figure 10, both contours may be compared with
each other, and one can observe a remarkable resemblance during most of the evo-
lution. Apparently, the filaments being detached from the discretized vortex contain
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t* = 0 t* = 1/12

t* = 2/12 t* = 3/12

t* = 5/12 t* = 8/12

Figure 11. Time series of the evolving vorticity contours in an annular shear flow as obtained
by the contour dynamics method (see text for more details). Numerical parameters: Rv/r0 = 0.26
(Lv/r0 = 0.10), γ0 = 0.32 and τ∗ = 0.43.

a negligible amount of vorticity, because otherwise, the circulation of the remaining
vortex would decrease faster than exponentially. In the final stage of the evolution,
however, the contour dynamics results show that the vortex is torn apart by the
shear flow, while the stripping process around the point vortex continues indefinitely.
This discrepancy may be understood by noting that in general, vortices with a finite
vorticity distribution are overcome by the shear flow at some critical value (e/ωm)c;
that is, when the local strain rate e (which is equal to γs/r

2
0 for the annular shear flow

described in this paper) is sufficiently large compared to the maximum vorticity ωm
of the vortex. When the ratio e/ωm exceeds this critical breaking value the stagna-
tion points will vanish, resulting in the final elongation of the entire vortex. On the
other hand, the point vortex cannot be broken by definition, since it contains infinite
vorticity in a singular point. Consequently, the stripping process persists forever.
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The contour dynamics results are also in very good qualitative agreement with
the laboratory observations depicted in figure 5 during the entire evolution of the
vortex. It is observed that both experimentally and numerically, the vortex remains
oriented perpendicular to the shear flow direction for a considerable time. In an
analytical study by Kida (1981), it was shown that this orientation corresponds to
the steady state of an elliptic patch of uniform vorticity embedded in a linear shear
flow. Moreover, contour dynamics simulations by Legras & Dritschel (1993, 1994)
have revealed that in a slowly growing linear shear flow, distributed vortices evolve
along quasi-stationary states for a considerable time until the vortex is torn apart by
the ambient flow. Although the annular shear as described in the present study is
characterized by a nonlinear radial velocity distribution, the vortex core is apparently
insensitive to the exact shape of the background velocity profile. The reason for this
may be that locally, the velocity profile of an arbitrary shear flow is always close to
linear.

The quasi-adiabatic stripping process described above is very similar to that ob-
served in the laboratory by Trieling, Beckers & van Heijst (1997) for a monopolar
vortex subjected to a pure strain flow, in which case the vortex is oriented at an angle
of 45◦ with respect to the horizontal strain axis. The similarity is not surprising since
in both cases the vortex is oriented at 45◦ with respect to the principal axes of the
strain. This may also explain the final orientation of the vortex as shown in figures 5
and 11, which corresponds to the elongation of the vortex along one of these principal
axes.

Although the evolution of the numerically obtained vorticity contours is very similar
to the evolving dye pattern as observed in the laboratory, the Ekman time TE is about
twice as large as the e-folding decay time τ corresponding to the numerical results
depicted in figures 10 and 11. Therefore, similar numerical simulations were performed
with τ = TE . Again, the results obtained by the contour kinematics technique were in
excellent agreement with the contour dynamics calculations for a considerable time.
However, the laboratory observations revealed a much faster evolution compared
with these latter numerical results.

Since the initial Rossby number was O(1) in the rotating fluid experiments, it is
very likely that the accelerated evolution of the laboratory vortex is due to nonlinear
effects, as discussed in § 4. Accordingly, the evolution of the vortex is initially much
faster than expected from an exponential vorticity decay. Furthermore, the Ekman
layer at the bottom wall drives a secondary motion that will result in an additional
radial growth of the vortex. Although this effect may be neglected in the linear case,
it is important when nonlinear effects come about. Both the faster decay of vorticity
and the growing vortex size may enhance the advection of vorticity across the inner
separatrix, which leads to an accelerated erosive decay of the vortex.

Another reason for the accelerated evolution of the laboratory vortex might be
that the vorticity decay is enhanced by viscous effects. Indeed, it was shown in a
numerical study by Mariotti, Legras & Dritschel (1994) that the combination of
vortex stripping and diffusion may speed up the stripping process and consequently
the decay of the vortex. However, considering the initial ratio of the Ekman decay
time and the characteristic diffusive time TE/Td ≈ 0.2, where Td ≡ r2

m/ν, diffusion
will only be of secondary importance.

Furthermore, it should be stressed that the initial vortex parameters used in the
numerical calculations have been obtained from measurements in a still ambient fluid.
It may well be that the generation of the sink vortex is affected by the shear flow.
However, close inspection of the spiralling dye structure revealed that in the initial
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stage Ro is still O(1). Quantitative measurements of the flow field have confirmed this
assertion. Finally, the effect of the sidewall may probably be neglected, since the core
of the vortex is being advected with the local velocity associated with the shear flow.

7. Conclusions
Rotating fluid experiments described in this paper have revealed the stripping of

a monopolar vortex in an irrotational annular shear flow. In contrast to uniform
shear flows, the vorticity filaments were observed to be asymmetrically attached to
the vortex core. Theoretically, the asymmetric stripping process can be explained
in terms of the streamlines in a co-rotating frame, as obtained by modelling both
the monopolar vortex and the irrotational shear flow simply by point vortices. The
co-rotating streamline pattern is characterized by two nested separatrices, each of
which contains one stagnation point. Combination of the point-vortex model with
the contour kinematics technique revealed a very good qualitative agreement with the
laboratory observations for the quasi-stationary part of the vortex evolution. Contour
dynamics simulations have shown that the final breaking of the vortex is caused by the
continuous spatial distribution of vorticity. The temporal evolution of the laboratory
vortex may be accelerated by nonlinearities and lateral diffusion, effects which were
not incorporated in the contour dynamics model. However, it is expected that these
mechanisms do not affect the basic evolution characteristics of the monopolar vortex
in an irrotational annular shear flow.
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